Disjoint odd integer subsets having a constant odd sum

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Disjoint odd integer subsets having a constant odd sum

We prove that for positive k, n and m, the set { 1,3, . ,2n 1) of odd integers contains k disjoint subsets having a constant odd sum m if and only if 9(k-1)Cm <2n-1, or 9k<m<n2/k and n2-mk#2.

متن کامل

Disjoint subsets of integers having a constant sum

We prove that for position integers n, m and k, the set {1, 2, . . . , n} of integers contains k disjoint subsets having a constant sum m if and only if 2k − 1 ≤ m ≤ n(n+ 1)/(2k).

متن کامل

On Integral Lattices Having an Odd Minimum

We study the kissing number of integral lattices of odd minimum, with special emphasis on the case of minimum 3.

متن کامل

Reconstructing graphs from their odd vertex subsets

Let G = (V; E) be a simple, undirected graph. A subset U V is odd if the subgraph of G induced by U has an odd number of edges. For a xed integer k, when does the knowledge of the family of odd subsets of V having cardinality k allow the reconstruction of G? The answer is: whenever k jV j?2 and k 2 mod 4. The proof proceeds via the vector space homomorphism k : (?(n);) ?! (? k (n);), where ?(n)...

متن کامل

Odd Sum Labeling of Some Subdivision Graphs

An injective function f : V (G)→ {0, 1, 2, . . . , q} is an odd sum labeling if the induced edge labeling f∗ defined by f∗(uv) = f(u) + f(v), for all uv ∈ E(G), is bijective and f∗(E(G)) = {1, 3, 5, . . . , 2q − 1}. A graph is said to be an odd sum graph if it admits an odd sum labeling. In this paper, we have studied the odd sum property of the subdivision of the triangular snake, quadrilatera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1994

ISSN: 0012-365X

DOI: 10.1016/0012-365x(94)90108-2